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Actin filament dynamics at barbed ends: New
structures, new insights
Naomi Courtemanche1 and Jessica L. Henty-Ridilla2,3
The dynamic actin cytoskeleton contributes to many critical
biological processes by providing the structural support un-
derlying the morphology of most cells, facilitating intracellular
transport, and generating forces required for cell motility and
division. To execute many of these functions, actin monomers
polymerize into polarized filaments that display different
structural and biochemical properties at each end. Filament
dynamics are regulated by diverse regulatory proteins which
collaborate to dictate rates of elongation and disassembly,
particularly at the fast-growing barbed (plus) end. This review
highlights the biochemical mechanisms of six barbed end
regulatory proteins: formin, profilin, capping protein, IQGAP1,
cyclase-associated protein, and twinfilin. We discuss how in-
dividual proteins influence actin dynamics and how several
intriguing complex assemblies influence the polymerization
fate of actin filaments. Understanding these mechanisms offers
insights into how actin is regulated in essential cell processes
and dysregulated in disease.
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Introduction
The intricate and dynamic process of polymerizing and

recycling actin filaments lies at the heart of fundamental
processes that dictate cell shape, establish tracks for
intracellular transport, and generate the forces that
www.sciencedirect.com
power motility and division. To execute these functions,
actin filament assembly is precisely regulated to pro-
duce filaments that polymerize at different speeds,
attain specific lengths, and are subject to higher-order
interactions. Actin filament dynamics are primarily
regulated at the barbed (plus) end by proteins that
stimulate polymerization, arrest growth, or promote
filament disassembly. We summarize recent biochemical

and high-resolution structural studies that examine how
actin filaments are regulated at their barbed ends by a
diverse ensemble of proteins: formin, profilin, capping
protein (CP), IQGAP1, cyclase-associated protein
(CAP/Srv2), and twinfilin. These studies further sug-
gest that competitive and collaborative interactions
among these proteins coordinate actin dynamics at the
barbed end. Unsurprisingly, perturbations to filament
assembly or mutations in these regulators contribute to a
multitude of pathological conditions including cancer
metastasis, neurodegenerative diseases, and immune

disorders [1e4].

New, detailed looks at the barbed end
ATP-bound actin monomers polymerize into filaments,
which elongate more rapidly at their barbed end than at
their pointed end [5,6]. Structural studies of actin fila-
ments have been limited to fiber diffraction and elec-
tron microscopy, which have traditionally yielded
relatively low-resolution structures. However, techno-
logical advancements enabling direct detection of
electrons have recently expanded the limits of cryo-EM
studies by significantly improving the resolution of re-
constructions [7,8]. In the past two years, several
studies have reported structures of actin filaments at

resolutions below 2.5 Å [9,10]. These exquisitely
resolved structures have elucidated conformational dif-
ferences at the barbed and pointed ends that underlie
the mechanisms of polarized filament elongation
and aging.

Newly polymerized actin subunits undergo conforma-
tional “flattening”, which involves a w20� rotation of
the outer subdomains relative to the inner subdomains
(Figures 1a and 1b) [11]. The two terminal subunits at
the barbed end adopt the classical flat conformation that

is typical of internal subunits [12]. This creates a surface
that is favorable for binding an incoming monomer. In
contrast, at the pointed end, the final two subunits of
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Figure 1
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Structures of the barbed and pointed ends of actin filaments. (a) Canonical front- and side-facing views of an ATP-actin monomer (PDB ID: 1ATN).
Due to their location when incorporated into filaments, subdomains 1 and 2 are referred to as the outer subdomains, and subdomains 3 and 4 are referred
to as the inner subdomains. The side view of the monomer is superimposed with the structure of an internal, filamentous actin subunit (gray; PDB ID:
8F8P) via superposition of the inner subdomains (surface representation) to highlight differences in the relative orientations of the outer subdomains
(ribbon representation). Gray and orange axes extend through the major axis of the outer subdomains. (b) Left, A structural model of an actin filament
shown as a surface representation. Right, Side-facing views of the terminal subunits at the pointed (PDB ID: 8F8S) and barbed (PDB ID: 8F8R) ends (top
and bottom) are superimposed with the structure of an internal, filamentous subunit, as in (a). This figure was adapted from Ref. [12] and made using
ChimeraX [89]. (c) Slices through surface representations of the terminal, barbed end subunit (left) and an internal subunit (right) of an actin filament near
the nucleotide-binding site depict the backdoor pathway for phosphate release. The actin subunits are positioned in a side view, with their front-facing
surface oriented to the right. ADP and Mg2+ are bound in the nucleotide binding cleft located on the front-facing surface. A Pi moiety from the structure of
an actin filament in the Mg2+-ADP-Pi state (PDB ID: 8A2S) was fit into the binding pocket and included to highlight the location of the Pi-binding site. The
arrow depicts the path of Pi release through the backdoor. This figure was adapted from Ref. [15] and made using ChimeraX [89].
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the filament are present in a twisted, monomer-like
conformation [12,13]. Thus, the diverging structures
at the barbed and pointed ends provide a structural
framework for polarized actin filament elongation.
Future studies will undoubtedly illuminate how this
structural asymmetry gives rise to the distinct poly-
merization kinetics at each end [14].

In addition to providing a binding site that supports
polymerization, conformational flattening promotes
nucleotide hydrolysis, which is followed by phosphate
release as the filament ages [10,11]. Structures of fila-
mentous actin bound to ADP-Pi and ADP have now
resolved the pathway for phosphate release, which
occurs through a “backdoor” that opens via disruption of
a hydrogen bonding network involving residues R177
and N111 (Figure 1c) [15]. In internal subunits, the
Current Opinion in Cell Biology 2024, 90:102419
backdoor is predominantly closed and opens only tran-
siently [10]. In contrast, this exit route is found largely
open at the barbed end, enabling rapid phosphate
release. Thus, in conditions favoring depolymerization,
phosphate can dissociate from the barbed end subunit
without requiring structural rearrangements. This ex-
plains why phosphate is released from the terminal

subunit at rates that are orders of magnitude faster than
from internal filament subunits [14,16].

Formin and profilin
Although actin monomers can assemble spontaneously
into filaments, cells express diverse families of “nucle-
ators” to overcome the kinetic barriers to filament for-
mation [6]. Among these proteins, formins are unique in
their ability to remain processively associated at barbed
ends following nucleation, where they regulate filament
www.sciencedirect.com
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elongation [17]. Formins encircle the terminal subunits
of barbed ends with their dimeric formin homology 2
(FH2) domains [18e20], which “step” forward and bind
incoming actin monomers at rates that are specific to
each formin [17].

High-resolution cryo-EM structures of actin filaments
bound by the mammalian formins mDia1 and INF2

[21,22], and the fission yeast formin Cdc12 [21], have
provided new molecular insights into the FH2-barbed
end interaction. One study revealed that all three
formins adopt a conserved asymmetric conformation in
which three of the four actin-binding sites in the FH2
dimer engage the terminal actin subunits at the barbed
end (Figure 2a) [21]. No major changes in actin subunit
flattening or helical twist were observed at the barbed
ends of formin-bound filaments. However, the trailing
FH2 subunit was found to sterically occlude the binding
site for an incoming actin monomer, thus requiring

repositioning to allow actin binding [21]. This reposi-
tioning may occur through an “undocking” event, which
enables translocation of the FH2 subunit in the barbed
Figure 2

Formin regulates subunit addition at the barbed end. (a) Structural views o
an actin filament. The actin filament (dark gray and light gray) is shown as a
representation (PDB ID: 8RU2). The actin subunits are labeled A1, A2, etc. T
Schematic of filament elongation mediated by formin and profilin. Profilin-actin
the formin FH1 domain and are delivered to the barbed end. Incorporation of
translocation of the trailing FH2 domain (dark green). This is followed by diss
adapted from Ref. [21].

www.sciencedirect.com
end direction and subsequent binding of the new actin
monomer. The mDia1 dimer was shown to adopt a wider
conformation, which may better alleviate the steric clash
than the Cdc12 and INF2 dimers do, consistent with
the faster polymerization kinetics measured for mDia1
[21,23,24]. A second study reported that mDia1 binds
the barbed end via a smaller contact surface than does
INF2, which may also contribute to the differing elon-

gation activities of these formins [22]. Binding of an
incoming actin monomer was observed to be coupled
with an inward rotation and displacement of the leading
FH2 domain toward the filament. Collectively, these
studies support a model in which the extent and nature
of each formin’s interactions with the barbed end
contribute to the rate of filament elongation.

Formins modulate filament elongation through in-
teractions with the abundant cytoplasmic protein
profilin. In cells, a substantial pool of actin monomers

are bound by profilin at their barbed end surface [25,26].
This interaction inhibits filament nucleation and the
elongation of free pointed ends [27e29]. However,
f the dimeric FH2 domain of the formin mDia1 bound to the barbed end of
surface and the formin (green and light green) is depicted using a ribbon
he leading and trailing FH2 domains are labeled as FH2L and FH2T. (b)
complexes (blue and yellow) bind polyproline tracts (pP tracts) encoded in
the incoming actin monomer at the barbed end requires undocking and
ociation of profilin from the actin and the polyproline tract. This figure was

Current Opinion in Cell Biology 2024, 90:102419
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profilin-actin complexes readily associate with barbed
ends [29,30], enabling filament elongation. Profilin
binding at the terminal subunit is thought to sterically
preclude the addition of an actin monomer to the
penultimate subunit [31]. Thus, profilin’s lifetime at
the barbed end limits the rate of elongation under
physiologically relevant conditions [32]. Profilin bound
to a barbed end also increases the dissociation rate of the

terminal subunit, thereby promoting depolymerization
in conditions where actin is limited [16,31].

Binding of profilin-actin complexes to polyproline tracts
encoded in the flexible FH1 domain enables direct de-
livery of actin to the barbed end, thus accelerating
elongation beyond the diffusion-limited rate observed
for spontaneous polymerization (Figure 2b) [33,34].
FH2 domains and profilin bind overlapping surfaces on
actin, suggesting that formin stepping may promote
profilin detachment following the delivery step [21].

The number of polyproline tracts encoded by FH1 do-
mains ranges from two to fourteen, giving rise to a wide
range of formin polymerization activities [23,35]. The
ensemble of tracts establishes a gradient of affinity for
profilin-actin complexes which promotes efficient de-
livery to the growing barbed end from each position in
the FH1 domain [36]. Competition for delivery from
multiple profilin-actin-bound polyproline tracts to the
single FH2-bound barbed end further limits the poly-
merization rate for each formin [37].

In addition to the FH1 and FH2 domains, the highly
variable C-terminal “tail” regions of formins play
important roles in polymerization [38]. Formin tails
have been shown to influence formin processivity
through electrostatic interactions with the sides of
elongating filaments [38]. An investigation of the im-
pacts of alternative splicing encompassing the tail
region of the Drosophila formin Fhod further refined
this model by revealing sequence-dependent tail
functions [39]. In contrast to previous measurements
using the formin Capu [38], longer Fhod tails were
observed to inhibit processive filament elongation by

promoting dissociation of Fhod from the barbed end.
This effect originates from a stretch of nine residues,
demonstrating that tails can modulate formin activity
in a highly sequence-specific manner. The tail domain
of the formin INF2 also plays a role in actin filament
severing [40]. Cryo-EM structures revealed that the
WH2 motif encoded in INF2’s tail region binds a site
adjacent to the hydrophobic cleft on subdomain 1 of
the actin subunits neighboring the FH2-bound barbed
end [22]. Thermal motions may enable repositioning of
both the WH2 motif and FH2 dimer, ultimately

weakening inter-subunit contacts along the filament
and promoting filament severing. The binding of
diverse effector proteins to tail regions can also
enhance the polymerization properties of formins via
Current Opinion in Cell Biology 2024, 90:102419
synergistic filament nucleation [41e44]. Expansion of
existing structural models to incorporate the flexible
FH1 and C-terminal regions will further enrich the
understanding of formin functions.

Capping proteins
The precise regulation of barbed ends by capping pro-
teins dictates filament length [45], enables the assembly
of actin arrays with precise architectures [46], and
maintains the integrity of barbed ends by preventing
subunit loss [47,48]. Barbed-end capping proteins are

diverse and include the calcium-sensitive gelsolin family
[49], the barbed-end-membrane linking adducin family
[50], and the highly abundant capping factor, hetero-
dimeric capping protein (CP) which is comprised of ɑ
and b subunits [46,48]. Crystal and cryo-EM structures
have elucidated the molecular basis for CP’s direct in-
teractions at the barbed end [12,46,51,52].Notably, CP’s
residence at the barbed end does not appreciably change
the structure of the actin filament but instead induces
major conformational changes to the CP itself [12]. CP
contains two C-terminal extensions, the ɑ-tentacle and

b-tentacle [12,46,51,52]. CP’s ɑ-tentacle blocks the site
of new monomer addition, effectively arresting filament
growth [12,46e48].Whereas binding of the b-tentacle to
the filament contributes to the overall affinity of CP for
the barbed end, it is not essential for directly arresting
polymerization [12,46,48]. Instead, the b-tenacle plays a
significant role in inhibiting interactions between the
barbed end and additional regulatory proteins, like
formin, twinfilin, and diverse Class I nucleation pro-
moting factors [46,53e55]. In vitro, CP’s interactions
with barbed ends have been shown to be high affinity

(kD = 0.1 nM), rivaling those of assembly-promoting
formin proteins [48,54e56]. Further adding to its po-
tency in vitro, CP dissociates from barbed ends slowly
(t1/2 = 25 min) [48,56].

Based on CP’s biochemical properties and the presence
of additional capping factors, some have speculated that
all barbed end growth could be effectively arrested in
cells [56,57]. However, while CP’s off-rate is very slow
in vitro [48,56], the turnover rate of CP in lamellipodia is
much faster (w2 s in fibroblasts [58]), indicating that

mechanisms regulating filament uncapping occur. Post-
translational modifications of residues in CP’s b-
tentacle promote filament uncapping [59]. CP is also
regulated by diverse proteins that contain anw30 amino
acid residue ‘capping protein interaction’ (CPI) motif
that expedites a direct interaction with CP. Binding of
CPI-containing proteins to CP prevents its barbed end
association by sequestering free CP molecules and
further facilitates CP’s dissociation from the barbed end
[48,51,60e62]. CPI-motif proteins display a large range
of uncapping potency and also inhibit interactions with

additional regulators of CP including V-1/myotrophin
[48,60,63]. Uncapping events also occur through
www.sciencedirect.com
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competitive interactions for barbed end binding sites
(explored below).

IQGAP1, cyclase-associated protein (CAP/Srv2), and
twinfilin
IQGAP1, CAP/Srv2, and twinfilin each attenuate
barbed-end growth, albeit by different mechanisms.
IQGAP1 is a large (189 kDa) homodimeric protein that
influences actin filaments in two ways: (1) filament
bundling via side-binding interactions mediated by a
calponin homology domain and (2) short (w20 s)

elongation-pausing events at the barbed end [64e66].
Distinguishing IQGAP1’s two activities remains chal-
lenging due to the absence of full structural data and
IQGAP1’s tight affinity and slow off-rate (0.006 s�1)
from filament sides [65]. However, truncation and
amino acid substitution analysis of purified IQGAP1 has
identified two residues in the IQ-motif region as
essential for pausing barbed end elongation [57]. Sub-
stitution of these residues with alanine does not affect
the protein’s dimerization or bundling activities [57]. In
NIH-3T3 cells, these substitutions fail to fully restore

changes in actin filament arrays, cell shape, or motility,
produced by deletion of the protein, while having no
effect on microtubules [57]. This suggests that these
residues are specific and essential for IQGAP1’s barbed
end activities.

CAP/Srv2 and twinfilin are both historically classified as
individual actin turnover factors. Notably, the ability of
either protein to disassemble actin filaments is greatly
enhanced by synergy with cofilin, albeit at much
different potencies [67e71]. Ortholog-specific varia-

tions add further complexity to the disassembly effects
produced by CAP/Srv2 and twinfilin. For example, yeast
Srv2 and yeast twinfilin each display stronger pointed
end disassembly activities compared to related
mammalian proteins [67,72]. In a recent paradigm shift,
several studies have revealed that CAP/Srv2 and twin-
filin can also be strategically positioned to restrict
growth and facilitate filament disassembly from the
barbed end [53,67,69,73,74]. Single-molecule micro-
scopy assays performed with purified proteins suggest
that complexes form at or near the barbed end to pro-

mote actin filament disassembly [67,75]. However,
available structures of CP and twinfilin do not provide
enough detail to infer the structural implications of a
CAP-twinfilin complex on a filament barbed end [76].
One model postulates that mammalian CAP promotes
barbed end disassembly by binding and stimulating the
removal of terminal actin subunits with its WH2 motif
and its actin monomer-binding CARP domains [74,77].
In contrast, twinfilin binding to the barbed end is hy-
pothesized to alter the conformation of the terminal
subunits in a manner that disrupts the CPebarbed-end
interaction [69,76]. The resulting loss of CP would
destabilize the barbed end, promoting twinfilin-
www.sciencedirect.com
mediated filament disassembly [69,76]. Until higher
resolution structures of these proteins and complexes
can be determined, the current biochemical data rein-
force the concept that competition for specific binding
sites at the barbed end drives important filament dy-
namics. For additional details on mechanisms of filament
disassembly, we point readers to this recent review [70].

Competitive, cooperative, and higher-order complex
mechanisms coordinate barbed end dynamics
At first glance, the notion that multiple large proteins

might occupy a single barbed end seems dubious,
especially given the often-opposing roles of many end
binding proteins. However, several examples have
recently emerged demonstrating how barbed end pro-
teins work together and compete to regulate actin dy-
namics. A key mechanism involves CP and the formin
mDia1, which bind barbed ends with similar high
affinities but perform opposing roles [54,55]. CP and
mDia1 do not directly interact but both can reside on a
single barbed end while interacting with different actin
surfaces [54,55]. When both proteins co-occupy a

barbed end, polymerization is stalled [54,55]. If formin
dissociates first, CP continues to pause growth.
Conversely, if CP dissociates first, filament growth re-
sumes. As such, “decision complexes” comprised of the
formin, CP, and the barbed end, play a critical role in
regulating actin assembly (Figure 3a). Although a full
structure of the decision complex at the barbed end is
not yet available, high resolution cryo-EM structures of
individual CPor mDia1 molecules bound to barbed ends
provide some insights into the possible mechanisms of
these interactions [12,21,78]. When CP joins a filament,

it undergoes major structural changes that do not sub-
stantially alter the shape of the actin filament or barbed
end [12]. As mDia1 steps forward to facilitate the
addition of new monomers to the barbed end [21], CP
might either bind to a previously unoccupied end or
leverage its existing end-bound, “flat” conformation to
stabilize itself through its ɑ- and b-tentacles at the
barbed end. CP and mDia1 mutually destabilize each
other at barbed ends through several steric clashes
related to the body and tentacles of CP and the FH2
domains of the formin [12,21,54,55,78]. Some formins

have also been shown to diffuse away from the barbed
end and along the lengths of actin filaments [24,55,78].
Such translocation events may further increase the
availability of the barbed end for binding by CP.
Whether the ability to assemble into decision complexes
is a feature that extends to all formins is not yet known.

Additional regulators further refine ‘decision complex’
dynamics to promote actin assembly (Figure 3b). For
example, IQGAP1 can directly bind, activate [66,79],
and displace formin from barbed ends [57]. Time-

resolved, four-color microscopy assays of these proteins
revealed that IQGAP1 also promotes the dissociation of
Current Opinion in Cell Biology 2024, 90:102419
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Figure 3

Complexes directly affecting barbed end dynamics. Cartoon depiction of dynamics associated with highlighted barbed end complexes. (a) Dynamics
of the formin-capping protein (CP) decision complex (DC). The DC pauses filament growth until either CP or the formin dissociates from the barbed end.
When CP dissociates, fast formin-mediated growth with profilin is promoted, whereas when the formin dissociates via steric competition with the ɑ and b-
tentacles of CP, CP prevents additional filament growth. (b) DC modulating proteins that promote actin filament growth. IQGAP1 and twinfilin further
regulate DCs. IQGAP1 promotes barbed end displacement of CP, mDia1, or DCs. In contrast, twinfilin directly interacts with CP through CPI-motifs to
displace CP and promote fast formin-mediated actin filament polymerization. (c) Complexes with traditional disassembly factors present at the barbed
end. The top panel explores two proposed mechanisms concerning formin-cyclase-associated protein (CAP/Srv2) interactions in the presence of profilin
(PFN1). In the first (depicted by the a), CAP/Srv2 displaces formin, while remaining associated with the barbed end. This promotes the depolymerization
of the filament in the presence of PFN1 [74]. In contrast, the second mechanism (depicted by the b), postulates the presence of the formin promotes the
dissociation of CAP/Srv2, stimulating fast filament growth [77]. The middle panel depicts twinfilin removing CP from the barbed end via its CPI-motif and
then its continued association promotes the removal of additional actin subunits from the barbed end. The bottom panel shows how twinfilin and CAP/
Srv2 synergize in the presence of PFN1 to rapidly depolymerize filaments from the barbed end.

6 Cell Dynamics (2024)
decision complexes [57]. Thus, IQGAP1 “refreshes”
barbed ends by decreasing the residence time of several
barbed end factors (i.e., mDia1, CP, and decision com-
plexes) [57]. The large, unstructured nature of IQGAP1
Current Opinion in Cell Biology 2024, 90:102419
suggests that it might sterically hinder or directly
compete with formin or CP for access to barbed end
binding sites. In a parallel mechanism, twinfilin, which
does not interact with mDia1, is able to displace CP via
www.sciencedirect.com
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its CPI motif to reinitiate formin-based assembly [75].
Each of these studies was performed with constitutively
active, truncated versions of mDia1, thus the conser-
vation of these activities with the full-length protein or
other formins remains unclear. Twinfilin and IQGAP1
are also predicted to interact [80], raising exciting
questions about how these factors collectively influence
the barbed end. These observations further underscore

the need for high-resolution structural studies and time-
resolved biochemical assays to understand these com-
plex mechanisms.

Several examples of cooperative barbed-end-binding
complexes build upon established mechanisms of fila-
ment depolymerization or uncapping events (Figure 3c).
Multiple efforts have demonstrated that the combina-
tions of the barbed end disassembly factors CAP/Srv2 or
twinfilin along with profilin synergistically promote
filament depolymerization [67,68,71,73,74,77]. Two

proposed mechanisms further explore how CAP/Srv2
influences formin-capped barbed ends [67,74]. In the
first, CAP/Srv2 promotes the displacement of formin
(mDia1) and stimulates subsequent filament depoly-
merization from the barbed end due to the presence of
profilin [67,74]. Coarse grain modeling of dimers of
CAP/Srv2’s CARP domain suggests that it promotes
formin dissociation through steric clashes that disrupt
filament elongation [74]. Notably these predicted
clashes still occur with a variant of CAP/Srv2 that is
unable to depolymerize barbed ends [74]. The second

mechanism differs in that the presence of CAP/Srv2
increases the lifetime of mDia1 at the barbed end and
promotes the barbed-end disassociation of CP [77].
While the outcomes of the two proposed mechanisms
are opposite, both may be possible depending on the
context, particularly in cells where these factors coexist.
Additional biochemical and high-resolution studies will
be needed to distinguish these details and assess
whether the displacement mechanism is a universal
feature of formins or unique to mDia1.

Beyond formin, interactions between CAP/Srv2, ADP-

bound actin filaments, and additional disassembly fac-
tors like cofilin may amplify the rate of filament disas-
sembly [68,69,71,77]. Some WH2 domain-containing
proteins like CAP/Srv2 and VopF mediate removal of CP
from the barbed end to initiate or amplify filament
disassembly mechanisms [77,81]. Further, CPI-
mediated interactions between CP and twinfilin have
consequences for barbed end dynamics. For example,
twinfilin, which promotes filament disassembly on its
own, and can synergize with CAP/Srv2 to drive
enhanced depolymerization, can also remove CP

[53,69,73]. These concepts are supported by observa-
tions from mammalian cells, where loss of twinfilin
disrupts actin filament arrays and reduces the turnover
rate of filaments present in lamellipodia [73]. The in-
direct roles of additional proteins that modulate the
www.sciencedirect.com
activity of bona fide barbed end regulators further in-
crease the complexity of these mechanisms. For
example, while both CARMIL and twinfilin contain
capping protein interaction (CPI) motifs that allow
them to bind to and remove CP from the barbed end,
CARMIL is 30-fold more effective [53,73,82]. In sum,
these findings reinforce the idea that the barbed end is a
molecular hub that is regulated through intricate

mechanisms in which multiple proteins compete and
collaborate to assemble filament arrays with pre-
cise dynamics.

Regulation of cellular actin dynamics by higher-order
mechanisms
Actin filament barbed ends exist in diverse subcellular
environments, including the tips of filopodia, the dense
actin meshworks present in lamellipodia, and the ends
of stress fibers [83]. Cleverly designed live-cell studies
have begun to probe areas of active actin assembly.
Measurements of formin-mediated filament elongation
obtained by tracking fluorescently labeled mDia1 in
HT1080 cells closely matched maximal elongation rates

observed in vitro, thus supporting current biochemical
models for formin-mediated polymerization [32].
Reverse genetics and live imaging have elucidated the
interactions between CP and Arp2/3 activating factors in
lamellipodia [46], as well as CP’s essential role in filo-
podia formation in combination with Ena/VASP [84].
Genetic manipulation and super-resolution imaging
have confirmed the competitive dynamics of CP-formin
decision complexes in live yeast [85]. These studies
have further revealed decision complex dynamics to be
slower in yeast than in mammalian cells and in vitro
assays [58,85]. Finally, sophisticated studies measuring
actin filament turnover in live-cells with genetically
depleted twinfilin levels revealed a more stable associ-
ation of CP with barbed ends and a reduced rate of actin
filament turnover, consistent with measurements from
in vitro protein assays [73]. Collectively, these studies
demonstrate that many of the general principles gleaned
from biochemical assays are indeed applicable to the
complex cellular interior. Continued exploration will
broaden our understanding of these mechanisms by
revealing the range of activities exhibited by protein

orthologs and isoforms, probing the significance of
binding affinities, rates, and stoichiometries, and iden-
tifying the unique and unifying features of diverse
cellular systems.
Conclusions
Recent studies have provided valuable insights into the

network of molecular interactions that precisely modu-
lates actin filament assembly, stability, and turnover at
barbed ends. They also raise exciting research questions,
including: How do additional binding partners further
modulate dynamics at the barbed end? How do actin
isoforms, which deviate structurally at their N-termini
Current Opinion in Cell Biology 2024, 90:102419

www.sciencedirect.com/science/journal/09550674


8 Cell Dynamics (2024)
and interact differentially with many barbed-end regu-
lators, increase the complexity of these interaction
networks [86e88]? While biochemical and structural
studies have yielded many important mechanistic de-
tails, exactly how these mechanisms are translated and
executed in the cellular context is currently underex-
plored. A complete understanding of the regulation of
actin dynamics will require insights gleaned from addi-

tional high-resolution and time-resolved studies
performed both in vitro and in cells.
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